
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1957
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design of Component Oriented Metric to Measure Effort during Software Modules Development
 Sh. Ashok1, Dr. Vijay Deep Gaur2

—————————— ——————————
Abstract
In the context of software effort estimation [1], system sizes the taken as a main driver of the system development effort.

But other structure design properties, such as coupling, cohesion have been suggested as additional factor. In this paper,

using effort data from component oriented development project [2,3], we empirical investigate the relationship between

component size and effort for a component and with additional impact structural properties such as connectivity,

component interfacing have an effort. This paper can be used as a practical analysis, repeatable and accurate analysis

procedure to investigate relationship between component properties and development effort.

Keyword
Component oriented development, COM, DCOM, Traditional Methodology, Effort Estimation.

Introduction
Component based software development [2,3] is a dream

of the software industries, where programmers would

become merely assembly workers and development

process of a new software system would be similar to

assembling. And it is demand of today software market

because today software project is becoming more and

more complex and is hard to manage and control.

In this paper here we will introduce new paradigm for

software development as well as provided metric for

effort estimation, that will improve the complexity of

component, dependency and composite of component

based software development. With the help of metrics, a

bottom-up measuring process from component to the

system can full fill evolution for component oriented

software development complexity. The purpose of

metrics is characterized with the simplicity, reusability,

portability, maintainability etc.

The idea behind component based software

development approach is, develop software system by

selecting appropriate off-the-shelf component and then

to assemble them a well defined software architecture. It

is new approach in software engineering community.

The purpose of component based software engineering

is to develop large system that incorporate previously

developed or existing component, thus cutting down an

development time and cost. It can also reduce

maintenance associated with the upgrading of large

system.

It has been proven that software complexity is one of the

major contributing factors to the cost of developing and

maintaining software. Meanwhile, effort estimation is one

of critical factor that directly affect the reusability,

portability, reliability and maintainability.

In component based software development the

architecture complexity is mainly attributable to the

dependencies between component, such as procedure

call, message passing and conversation protocol. Here

we will introduce component based metrics that will

directly affect on the interface among component and

component interface is the key factor of component

complexity.

1 Research Scholar, Department of Computer Science, Shri Venkateshwara University,

Gajraula, India, ashokrtk@gmail.com

2 Assistant Professor, Government College Krishan Nagar, M.Garh, Haryana, India
vijaydeepgaur83@gmail.com

IJSER

http://www.ijser.org/
mailto:ashokrtk@gmail.com
mailto:vijaydeepgaur83@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1958
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Literature survey
CBSE embodies the “the ‘buy, don’t build’ philosophy".

CBSE is aiming at realizing long-waited software reuse

by changing both software architecture and software

process. Because of the extensive uses of components,

the Component-Based Software Engineering (CBSE)

process is quite different from that of the traditional

waterfall approach. CBSE not only requires focus on

system specification and development, but also requires

additional consideration for overall system context,

individual components properties and component

acquisition and integration process. This work presents

an indicative literature survey of techniques proposed for

different phases of the CBD life cycle. The aim of this

survey is to help provide a better understanding of

different CBD techniques for each of these areas [4].

Purposed Work
Here we will measure the effort of software project that is

to develop based on component technology, such as

COM [8, 9] /DCOM [11]. COM/DCOM is general

architecture for component software. It will define how

component and their client interact directly and

dynamically. DCOM is a protocol that enables software

components to communicate directly over network [10].

These are designed for use across multiple network

transports, including internet protocol such as HTTP.

COM AND DCOM HAVE PROVIDED a foundation for

building component-based applications. Although they

were initially available only on Windows platforms, the

ongoing porting efforts to all major versions of Unix and

mainframes (11) might turn COM/DCOM into a major

cross-platform integration tool. The next generation of

COM, called COM+, aims at simplifying the construction

of COM applications by providing support in languages

and tools and by providing a set of essential object

services.

Component Based Effort Estimation
Metrics[15,16]

1. Component Effort (CE) Metric[18,19]: Estimated

elapsed time taken to structure application (hrs)

 e - effort man-hrs, spent by programmer to develop

application software

DESIGN_TOOL – this is to variable measure the

level of productivity tool used by programmers in

designing software. Using good designing tool, the

productivity ratio of programmer is high. It is very

important tool by allowing programmers to use to

clarify end user’s requirements at the early stage of

software development life cycle. This variable is

measured using a five point liker-like scale ranging

from (1) very low productivity to (5) very high

productivity

PROG_EXP – this variable is to measure the

experience of programmers in analyzing and

designing application software in computer

industries. The measurement, we use to count the

number of years that a programmer who has been

developing application software in company. The

higher number of years of the service is in industry,

the more working experience, he has. For this

variable, we take average of years of experience

among team members for each software project.

TEAM_SIZE – this variable is to measure number of

programmer working in a team in analyzing and

designing software project. For this variable, the

number of programmers assigned to analyze and

design the software projects is collected, according

to the records of company.

CE = e + b1DESIGN_TOOL + b2PROG_EXP +
 b3TEAM_SIZE + b4PROG_COMP +
 b5LANG_EXP + b6TYPE_EXP

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1959
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

PROG_COMP – this variable is to measure the level

of program complexity delivered. Determination of

program complexity, at the early stage of software

development life cycle is under the control of

programmer

LANG_EXP – this variable is to measure level of

working experience of programmer, who is in

specific kind of programming language. The

development time and effort are reduced

substantially, if programmer is an experienced one.

TYPE_EXP - this variable measure type of

experience based on project type

2. Component Interlinking Effort (CIE) Metric:
Estimates elapsed time taken to interlink

component to build component structure (hrs)

3. Component Interface Planning (CIP) Metric:
Estimated elapsed time taken to plan

component’s interface (hrs)

 e1 – Interface Analysis

e1 – Interface design

e1 – Interface Development

Component Interface Building (CIB) Metric:
Estimated elapsed time taken to implement component

interface (hrs)

Effort estimation, here takes place, top-down or bottom-

up based on Component implementation. However,

bottom-up is better choice then top-down.

CIB, is determined by using deliverable COM/DCOM in

software Application, the value of deliverable component

are given below:

Deliverable

(COM/DCO

M)

Ver

y

Lo

w

Lo

w

Mediu

m

Hig

h

Ver

y

Hig

h

Report 4 8 16 32 64

Interface 24 48 96 192 384

Conversion 24 48 96 192 384

Enhanceme

nt

4 8 16 32 64

Form/Scree

n

8 16 32 64 128

4. Component Testing Effort (CTE) Metric:
Estimated elapsed time taken to test all links in

component (hrs)

 Effo

rt in

PH

Tes

t

Cas

e

 Id

Test case

Descriptio

n

Bes

t

Cas

e

Wor

st

Cas

e

Norm

al

Case

Expect

ed

1 Set up
Test
Environm
ent

1.2 Check

Test

Environm

ent

1 2 1.5 1.500

1.3 Install

Screen

Reorder

0.7

5

1.5 1 1.042

1.4 Insure

Defect

Reporting

Mechanis

1.2

5

3 2 2.024

 Number of interlink component
CIE =
 Total number of component

CIP = e1 + e2 + e3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1960
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

m

5 Login
Screen
on IE

5.1 Correct

Login

0.0

5

0.2 0.1 0.108

5.2 Wrong id

and

Correct

 Password

0.0

7

0.2 0.1 0.112

5.3 Correct Id

and wrong

Password

0.0

7

0.2 0.1 0.112

5.4 Forgot

Password

Functional

ity

0.1

5

0.3 0.2 0.208

6 Login
Screen
on Fire
fox

6.1 Correct

Login

0.0

5

0.2 0.1 0.108

6.2 Wrong id

and

Correct

Password

0.0

7

0.2 0.1 0.112

6.3 Correct Id

and wrong

Password

0.0

7

0.2 0.1 0.112

6.4 Forgot

Password

Functional

ity

0.1

5

0.3 0.2 0.208

 Total
Effort
Estimate

3.6

80

8.30

0

5.50

0

5.663

Total Effort 0f Component Oriented Software
Development is:

Total Effort = CE + CIE + CIP + CIB + CTE

Effort Estimation Based on Meta mata Metrics [19, 20, 21

]

Metric Measure Description

CC Complexity The amount of decision

logic in Code

LOC Understandability

Maintainability
The length of code;

related metrics measure

Line of comment;

effective line of code

WMC Complexity

Understandability

Reusability

The number of methods

in class

RFC Design

Usability

Testability

The number of methods

that can be invoked

From a class through

message

CBO Design

Reusability

Maintainability

The of other class to

which a class is coupled

DIT Reusability

Testability

The depth of a class

within the inheritance

Hierarchy

No. of

Attributes

Complexity

Maintainability

The Amount of state a

class maintain as

represented

By the number of fields

declared in the class

Result
Comparison of effort estimation of software project,

that is measured based on meta mata metrics

that is used in traditional software, with

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1961
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

component oriented software metrics that we

have designed in this paper.

Sr

No Major Activity

Effort

Estimation

Based on

Meta

mata

Metrics

Effort

Estimation

Based

On

Component

Oriented

Metrics

1 HMS Staff 46 17.677

2 Emergency 57 23.003

3 Enquiry 19 6.7

4 OPD 36 19.009

5 Managing Unit 63 32.123

6

Doctor
Examination 39 29.123

7 Nurse Detail 31 16.23

8 Patient Status 28 14.002

9 Pharmacy/Drug 49 36.023

10 Laundry 24 9.8

11 Kitchen 12 2.006

Effort Estimation

0

5

10

15

20

25

30

0 1 2 3 4

Activity

E
ff

o
rt

Meta Mata Metric

Component oriented
Metric

Conclusion
The component oriented software project is implemented

based on Microsoft technology such as COM/DCOM.

Here we have been designed component oriented

metrics that are used to determine effort of component

oriented software. These metrics are designed in such a

way that it will reduces more than 64 percentage effort of

software as compared to meta mata metrics that are

used to determine effort of traditional software

development..

REFERENCES

1. A. M. Zaremski and J. M. Wing, “Specification

matching of software components”, ACM

Transactions on Software Engineering &

Methodology, 6(4):333-369, October 1997.

2. X.Cai, M.R. Lyu, K. Wong, Component-Based

Soft-ware Engineering: Technologies,

Development Frameworks, and Quality

Assurance Schemes, Pro-ceedings APSEC

2000, Seventh Asia-Pacific Software

Engineering Conference, Singapore, December

2000, pp 372-379.

3. 3.X.Cai, M.R. Lyu, K. Wong, Component-Based

Soft-ware Engineering: Technologies,

Development Frameworks, and Quality

Assurance Schemes, Pro-ceedings APSEC

2000, Seventh Asia-Pacific Software

Engineering Conference, Singapore, December

2000, pp 372-379

4. D. Box, Essential COM, Addison-Wesley,

Reading, Mass., 1998.

5. G.C. Hunt and M.L. Scott, A Guided Tour of the

Coign Automatic Distributed Partitioning System,

Tech. Report MSR-TR-98-32,Microsoft

Research, Redmond, Wash., 1998.

6. Y.M. Wang and W.J. Lee, “COMERA: COM

Extensible Remoting Architecture,” Proc.

COOTS ’98: Fourth USENIX Conf. Object-

Oriented Technologies and Systems, Usenix,

Berkeley, Calif., 1998,pp. 79–88;

http://www.research.microsoft.com/~ymwang/pa

pers/COOTS98CR.htm.

7. George T. Heineman and William T. Councill,

“Component-Based Software Engineering

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1962
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Putting the Pieces Together”, Addison-Wesley,

Boston, MA ,880, June 2001.

8. “The Component Object Model Specification,”

Microsoft Corp., Redmond, Wash.,1995;

http://www.microsoft.com/com/comdocs.htm.

9. “COM+,” Microsoft Corp., 1998;

http://www.microsoft.com/com/complus.htm.

10. “DCE 1.1: Remote Procedure Call

Specification,” The Open Group, Cambridge,

Mass., 1997;

http://www.rdg.opengroup.org/public/pubs/catalo

g/c706.htm.

11. N. Brown and C. Kindel, “Distributed Component

Object Model Protocol—DCOM/1.0,” Microsoft

Corp., 1998; http://www.microsoft.com/com/.

12. Don Box, Essential COM, Addison Wesley,

1998.“Microsoft Transaction Server,” Microsoft

Corp., 1998;

http://www.microsoft.com/com/mts.htm.

13. “Millennium: Self-Tuning, Self-Configuring

Distributed Systems,” Microsoft Research,

1998;http://research.microsoft.com/sn/Millenniu

m

14. M. Kirtland, “Object-Oriented Software

Development Made Simple with COM+ Runtime

Services,” Microsoft Systems J., Vol.12, No. 11,

Nov. 1997, pp. 49–59.

15. 16. K. P. Norris, “The Accuracy of Project Cost

and Duration Estimates in Industrial R&D”, R&D

Management, Vol. 2(1), pp.25-36. 1971.

16. P. A. Murmann, “Expected Development Time

Reductions in the German Mechanical

17. Engineering Industry”, Journal of Product

innovation Management, Vol, 11, pp.236-252,

1994

18. 18. K. P. Norris, “The Accuracy of Project Cost

and Duration Estimates in Industrial R&D”, R&D

Management, Vol. 2(1), pp.25-36. 1971. [2] P. A.

Murmann, “Expected Development Time

Reductions in the German Mechanical

Engineering Industry”, Journal of Product

innovation Management, Vol, 11, pp.236-252,

1994.

19. 19 A. J. Albrecht, “Measuring Application

Development Productivity”, Proceedings of the

IBM Applications Development Symposium,

pp83-92, 1979.

20. 19. J. W. Bailey and V. R. Basili, “A meta-model

for software development resource

expenditures,” in Proceedings of IEEE

International Conference on Software

Engineering, San Diego, California, 1981, pp.

107–116.

21. 20 H. K. N. Leung, “Estimating maintenance

effort by analogy,” Empirical Software

Engineering, vol. 7, no. 2, pp. 157–175, Jun.

2002.

22. 21 A. J. Albrecht, “Software Function, Source

Lines of Code, and Development Effort

Prediction”, IEEE Transactions on Software

Engineering, Vol. 9(6), pp639-648, 1983. IJSER

http://www.ijser.org/
http://www.microsoft.com/com/complus.htm
http://www.microsoft.com/com/
http://www.microsoft.com/com/mts.htm

